康納溫菲爾德石英晶體振蕩器介紹,優秀的Connor-winfield晶振公司憑借其50多年的歷史以及豐富的生產經驗和技術服務,不斷的更新創造更具有價值的頻率控制產品。并通過自身的不懈的努力,打磨優質的產品,產品具有高精度,高頻率,高性能,小體積,高溫度,低抖動等特點,產品包含溫補晶振,壓控晶振,石英晶體振蕩器等產品。盡管引及了競爭性諧振器技術,但與目前可用的任何其它頻率控制技術相比,基于石英的振蕩器在長期和短期穩定性精度以及低抖動和低相位噪聲信號生成方面繼續提供最高水平的性能。
大多數IC帶有內置有源晶體振蕩器電路采用Gated-Pierce設計,其中振蕩器是圍繞單個CMOS反相門構建的。對于振蕩器的應用這通常是一個單一的反相包括一個P通道和一個N通道的級增強型MOSFET,更常見在數字世界中,作為一個無緩沖逆變器(見圖。1) ??梢允褂镁彌_逆變器(通常包括三個串聯的P-N MOSFET對),但是數千的相關收益將導致可能不太穩定的成品振蕩器。
一個實用的振蕩器電路如圖2所示包括所述未緩沖反相器、兩個電容器,兩個電阻器和石英晶體。了解如何該振蕩器工作CMOS反相門必須被視為具有增益、相位和傳播延遲約束,而不是作為邏輯設備使用1和0。康納溫菲爾德石英晶體振蕩器介紹
圖3顯示了直流傳輸特性(Vin與。Vout)和未緩沖的DC偏置點線HCMOS逆變器74HCU04。在3.3V和1M? 對于Rf,逆變器將與其輸入和輸出一起放置電壓約為1.65V。這種逆變器現在被認為是在其線性區域中被偏置。輸入的微小變化電壓將被增益放大,并顯示為輸出電壓的變化較大。
圖4顯示了一組典型的開環增益曲線相同的74HCU04。在3.3V時,逆變器的增益為20(26 dBV)從DC到2MHz,具有3dB衰減頻率為8.5MHz,并且看起來仍然具有增益超過100MHz。
為了將這種偏置反相門用作振蕩器,它必須具有足夠的增益克服了反饋網絡的損耗(圖中的C1、C2、Rlim和石英晶體。2) ,振蕩頻率下的負電阻足以超過晶體等效串聯電阻,以及整個電路周圍的相移360度。人們很容易想到這種74HCU04逆變器可以用來制造工作頻率超過100MHz的振蕩器,因為它在3.3V時有足夠的增益,但實際上由于各種振蕩器環路周圍的相移。
該電路的分析很難概括,因為它非常依賴于家族所使用的CMOS門以及該特定CMOS家族的內部構造。全部的CMOS反相門具有輸入電容、輸出電容和輸出“電阻”和傳播延遲,所有這些都會影響C1、C2和Rlim的選擇如圖2所示,并最終確定OSC晶振的較高工作頻率。選擇偏置電阻器Rf通常在1M之間? 和10M?, 降低一個值將有效出現在水晶上,并可能導致水晶在雜散或泛音頻率。康納溫菲爾德石英晶體振蕩器介紹.
考慮一個ESR為15的20MHz晶體?, 3pF的C0,需要負載電容為20pF,晶體功耗約為100µW。
從20pF的期望負載電容開始,這可以近似為C1+柵極輸入電容(1至5pF是典型值)與C2串聯。C1的比率至C2將影響增益和晶體功率耗散。一個好的起點是C1≈C2。為了增加環路增益(并降低晶體功耗),使C1<C2。這對于負載電容為20pF,柵極具有~3pF的輸入電容。